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cell may have closer parallels to the
dynamic action of vertebrate Kif7.
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Animal Cognition: Aesop’s Fable Flies
from Fiction to Fact

A new study shows that rooks are able to spontaneously drop stones into a tube
of water to obtain a floating worm. This sophisticated problem solving raises
intriguing questions about the use of imagination in animals.

Alex H. Taylor and Russell D. Gray

Do Aesop’s fables (Figure 1) reflect the
behaviour of real animals? While talking
foxes and racing tortoises may be
unlikely, Bird and Emery’s recent
findings suggest there may be a kernel
of truth to one of Aesop’s most famous
stories. In the fable of the crow and the
pitcher, a clever crow drops stones into
a jug of water in order to raise the level
and ease its thirst (Figure 1) [1]. The
rooks in the experiment reported
recently in Current Biology by Bird
and Emery [2] did something strikingly
similar — they dropped stones into

a tube of water in order to bring a
floating worm within reach. Two of

the four rooks tested were able to
spontaneously solve this problem on
the first trial. The rooks were then
able to rapidly learn to drop big
stones, rather than small ones, into
the tube. They also rapidly learnt

to drop stones only into tubes
containing water, and not those
containing sawdust.

At first glance, the way the birds
solved these tasks seems remarkably
insightful and human-like. The rooks
only put in sufficient stones to bring
the worm within reach, and then did
not continue to add stones once the
worm had been removed. The rooks
also appeared to examine the problem
before putting stones into the tube,

consistent with the idea that they
initially assessed the task. One
interpretation of these results is that
the rooks had immediate causal
knowledge of the task [3]. That is,
they understood how the stones
would interact with the water and
therefore could estimate how high
the water would rise once a certain
number of stones were put into the
tube. As the fable tells it, the crow
put the stones into the pitcher
because it knew that this would
cause the water level to rise.

However, the follow-up experiments
preclude the use of such human-like
causal knowledge. If the rooks had
understood how stones interact with
water they should have also known
that bigger stones would displace more
water. In contrast to this expectation,
the rooks did not immediately use large
stones when presented with a choice
between small and large stones,
although they quickly learnt to do so.
The rooks also did not seem to have
knowledge of the peculiar causal
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Figure 1. In Aesop’s fable of “The Crow and
the Pitcher”, the thirsty crow drops stones
into a jug of water in order to raise the level
and ease its thirst. From [1].

characteristics of water. When
presented with a choice between

a tube with water and one with
sawdust, the rooks had to learn

to choose the water-filled tube. The
follow-up experiments carried out by
Bird and Emery [2] therefore exemplify
the common paradox found in studies
of animal cognition. Animals can
behave in apparently complex ways
that lead us to believe they have
cognitive abilities just like us.

But when we start to probe their
performance with more revealing
tasks, they make mistakes that indicate
that they are solving these tasks using
simpler cognitive mechanisms. What
exactly, then, were the rooks thinking
when they solved the problem?

In the past, spontaneous problem
solving has been suggested to be
based on ‘insight’, a rather murky
term that has both folk meaning in
human language and several technical
definitions. Thorpe’s [4] commonly
cited definition of insight is, “the
sudden production of new adaptive
responses not arrived at by trial
behaviour or the solution to
a problem by the sudden adaptive
reorganization of experience”.
However, use of this term leaves
us with a cognitive black box. What
kind of cognitive mechanisms allow
the sudden reorganisation experience?
How does the animal know that this
reorganisation is adaptive?

A related idea that avoids such
vagaries is Dennett’s [5] conception

of a ‘Popperian creature’. According
to Dennett, Popperian creatures

have imagination and so can mentally
simulate the real world and the causal
regularities in it. Thus, when these
creatures are faced with a novel
problem, they can engage in a process
of mental conjectures and refutations
to try out various solutions. Given the
results of experiments 2 and 3 of Bird
and Emery [2], it seems unlikely that
the rooks were using such complex
cognition. As the crows did not
understand the differential effects of
large and small stones on water, or
the effects of stones on water and
sawdust, it seems likely that they did
not imagine how the stone would
interact with the water before they
dropped the stone into the water for
the first time. Thus, the riddle of exactly
how they managed to spontaneously
solve the problem without trial

and error learning still remains.

An alternative explanation for the
spontaneous problem solving resides
in the rooks’ previous experience.

The birds in this experiment all had
previously dropped stones into a tube
with a platform in order to collapse it
and release food [6]. On their first trial
with the new experiment they could
have generalised this past experience
to the new apparatus and dropped the
stone down the water-filled tube. The
stone dropping had a positive effect:
the water rose and the worm moved
closer. This would have reinforced the
stone-dropping behaviour and so set
up a perceptual-motor feedback cycle.
The crows therefore continued to put
stones into the tube until the worm
rose within reach. Perceptual-motor
feedback cycles of this type may

also be able to explain other cases

of apparently insightful problem
solving in birds, such as spontaneous
string pulling to obtain food

in ravens [7] and keas [8].

What about our close primate
relatives? Orangutans have recently
been shown capable of solving a very
similar problem to the one Bird and
Emery [2] presented to the rooks.
Mendes et al. [9] presented orangutans
with a tube quarter-filled with water.
Floating on the surface of the water
was a peanut. To solve the problem
the apes needed to collect water from
adrinking container in their mouths and
spit it into the tube in order to raise the
water level and gain the peanut. After
trying to reach the peanut with their
fingers or mouths, the orangutans spat

water into the tube in order to raise the
level and so gain the reward on the first
trial. Interestingly, the apes also solved
acontrol task where there was no water
in the tube, which suggests that the
sight of water was not necessary for
the solution of the problem. However,
as the apes were already experienced
water spitters, testing with naive
individuals is needed to confirm

this conclusion.

The crucial issue for the
interpretation of the orangutan problem
solving is the first spitting attempt. As
Mendes et al. [9] note, it is unclear if the
apes spat the water, saw the effect it
had on the peanut and then repeated it,
or if the apes had fully formed the
solution to the problem in their minds
before spitting the first mouthful. In
other words, was this a randomly
generated behaviour that was then
reinforced, or did the apes imagine
the solution and so seek out the water
in order to spit into the tube? Given
the novelty of the task and the fact
that the apes had never used water
to solve other problems, the evidence
for imagination is stronger than that
in the rook study. However, the future
experiments with opaque tubes and
naive subjects proposed by Bird and
Emery could provide more compelling
evidence for imagination in corvids.
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